Ramanujan-type formulae for 1/π: A second wind?∗

نویسنده

  • Wadim Zudilin
چکیده

In 1914 S. Ramanujan recorded a list of 17 series for 1/π. We survey the methods of proofs of Ramanujan’s formulae and indicate recently discovered generalisations, some of which are not yet proven. Let us start with two significant events of the 20th century, in the opposite historical order. At first glance, the stories might be thought of a different nature. In 1978, R. Apéry showed the irrationality of ζ(3) (see [4] and [13]). His rational approximations to the number in question (known nowadays as the Apéry constant) have the form vn/un ∈ Q for n = 0, 1, 2, . . . , where the denominators {un} = {un}n=0,1,... and numerators {vn} = {vn}n=0,1,... satisfy the same polynomial recurrence (n + 1)un+1 − (2n + 1)(17n + 17n + 5)un + nun−1 = 0 (1) with the initial data u0 = 1, u1 = 5, v0 = 0, v1 = 6. (2) Then lim n→∞ vn un = ζ(3) (3) ∗A talk at Number Theory Launch Seminar (Max Planck Institute for Mathematics in Bonn, April 25, 2006).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 9 M ay 2 00 8 Ramanujan - type formulae for 1 / π : A second wind ? ∗

In 1914 S. Ramanujan recorded a list of 17 series for 1/π. We survey the methods of proofs of Ramanujan’s formulae and indicate recently discovered generalizations, some of which are not yet proven. The twentieth century was full of mathematical discoveries. Here we expose two significant contributions from that time, in reverse chronological order. At first glance, the stories might be thought...

متن کامل

Quadratic Transformations and Guillera ’ S Formulae

We prove two new series of Ramanujan type for 1/π 2 .

متن کامل

Hypergeometric (super)congruences

The sequence of (terminating balanced) hypergeometric sums an = n ∑ k=0 ( n k )2( n+ k k )2 , n = 0, 1, . . . , appears in Apéry’s proof of the irrationality of ζ(3). Another example of hypergeometric use in irrationality problems is Ramanujan-type identities for 1/π, like ∞ ∑ k=0 ( 2k k )3 (4k + 1) (−1) 26k = 2 π . These two, seemingly unrelated but both beautiful enough, hypergeometric series...

متن کامل

Ramanujan-type formulae and irrationality measures of some multiples of $\pi$

An explicit construction of simultaneous Padé approximations for generalized hypergeometric series and formulae for the quantities π √ d , d∈{1, 2, 3, 10005}, in terms of these series are used for estimates of irrationality measures of these multiples of π. Other possible applications are also discussed. Bibliography: 14 titles. Introduction An important role in the history of the Archimedes co...

متن کامل

A Matrix Form of Ramanujan-type Series for 1/π

In this paper we prove theorems related to the Ramanujan-type series for 1/π (type 3F2) and to the Ramanujan-like series, discovered by the author, for 1/π (type 5F4). Our developments for the cases 3F2 and 5F4 connect with the theory of modular functions and with the theory of CalabiYau differential equations, respectively.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006